Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

⚠️ DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

⚠️ WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

⚠️ CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

⚠️ WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

1 Introduction

1.1 Purpose of this documentation

These instructions are a brief summary of important features, functions and safety information, and contain all information required for safe use of the device. It is your responsibility to read the instructions carefully prior to installation and commissioning. In order to use the device correctly, first review its principle of operation.

The instructions are aimed at persons who mechanically assemble the device, connect it electrically, and start it up.

To achieve optimum usage of the device, read the detailed version of the manual.

See also

Process instrumentation catalog (http://www.siemens.com/processinstrumentation/catalogs)
SIPART PS2 product information (http://www.siemens.com/sipartps2)
1.2 History

The following table shows the most important changes in the documentation compared to the previous edition.

<table>
<thead>
<tr>
<th>Edition</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/2011</td>
<td>First edition</td>
</tr>
<tr>
<td>01/2013</td>
<td>Revision of the warning information as well as sections “Technical data (Page 34)”, “Connecting (Page 12)” and “Commissioning (Page 23)”.</td>
</tr>
<tr>
<td>02/2014</td>
<td>Chapter “Technical data (Page 34)”</td>
</tr>
</tbody>
</table>

1.3 Purpose

The electropneumatic positioner is used for the continuous control of process valves with pneumatic drives in the following industries.

- Chemicals
- Oil and gas
- Energy production
- Food and beverages
- Pulp and paper
- Water/waste water
- Pharmaceutical industry
- Offshore plants

Operate the device according to the specifications in Chapter “Technical data (Page 34)”. For additional information, refer to the operating instructions for the device.

1.4 Checking the consignment

1. Check the packaging and the device for visible damage caused by inappropriate handling during shipping.
2. Report any claims for damages immediately to the shipping company.
3. Retain damaged parts for clarification.
4. Check the scope of delivery by comparing your order to the shipping documents for correctness and completeness.

WARNING

Using a damaged or incomplete device
Danger of explosion in hazardous areas.
- Do not use damaged or incomplete devices.

1.5 Transportation and storage

To guarantee sufficient protection during transport and storage, observe the following:

- Keep the original packaging for subsequent transportation.
- Devices/replacement parts should be returned in their original packaging.
- If the original packaging is no longer available, ensure that all shipments are properly packaged to provide sufficient protection during transport. Siemens cannot assume liability for any costs associated with transportation damages.
CAUTION
Insufficient protection during storage
The packaging only provides limited protection against moisture and infiltration.

- Provide additional packaging as necessary.

Special conditions for storage and transportation of the device are listed in “Technical data” (Page 34).

1.6 Notes on warranty

The contents of this manual shall not become part of or modify any prior or existing agreement, commitment or legal relationship. The sales contract contains all obligations on the part of Siemens as well as the complete and solely applicable warranty conditions. Any statements regarding device versions described in the manual do not create new warranties or modify the existing warranty.

The content reflects the technical status at the time of publishing. Siemens reserves the right to make technical changes in the course of further development.

2 Safety instructions

2.1 Requirement for safe use

This device left the factory in good working condition. In order to maintain this status and to ensure safe operation of the device, observe these instructions and all the specifications relevant to safety.

Observe the information and symbols on the device. Do not remove any information or symbols from the device. Always keep the information and symbols in a completely legible state.

2.1.1 Warning symbols on the device

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Consult operating instructions</td>
</tr>
<tr>
<td>⚠️</td>
<td>Hot surface</td>
</tr>
<tr>
<td>⚢️</td>
<td>Isolate the device from power using a circuit-breaker</td>
</tr>
<tr>
<td>☢️</td>
<td>Protect the device from shocks (otherwise the specified degree of protection is not guaranteed)</td>
</tr>
<tr>
<td>☑️</td>
<td>Protective insulation; device in protection class II</td>
</tr>
</tbody>
</table>
2.1.2 **Laws and directives**

Observe the test certification, provisions and laws applicable in your country during connection, assembly and operation. These include, for example:

- National Electrical Code (NEC - NFPA 70) (USA)
- Canadian Electrical Code (CEC) (Canada)

Further provisions for hazardous area applications are for example:

- IEC 60079-14 (International)
- EN 60079-14 (EC)

2.1.3 **Conformity with European directives**

The CE marking on the device shows conformity with the regulations of the following European guidelines:

- **Electromagnetic Compatibility (EMC)**

- **Atmosphère explosible (ATEX)**

The applied standards can be found in the EC conformity declaration of the device.

2.2 **Improper device modifications**

| WARNING |
| --- | |
| Improper device modifications |
| Danger to personnel, system and environment can result from modifications to the device, particularly in hazardous areas. |
| - Only carry out modifications that are described in the instructions for the device. Failure to observe this requirement cancels the manufacturer's warranty and the product approvals. |

2.3 **Use in areas subject to explosion hazard**

Qualified personnel for hazardous area applications

Persons who install, connect, commission, operate, and service the device in a hazardous area must have the following specific qualifications:

- They are authorized, trained or instructed in operating and maintaining devices and systems according to the safety regulations for electrical circuits, high pressures, aggressive, and hazardous media.
- They are authorized, trained, or instructed in carrying out work on electrical circuits for hazardous systems.
- They are trained or instructed in maintenance and use of appropriate safety equipment according to the pertinent safety regulations.

| WARNING |
| --- | |
| Unsuitable device for the hazardous area |
| Danger of explosion. |
| - Only use equipment that is approved for use in the intended hazardous area and labelled accordingly. |

See also

Technical data (Page 34)
3 Installing/mounting

3.1 Basic safety instructions

WARNING

Loss of safety of device with type of protection "Intrinsic safety Ex i"

If the device has already been operated in non-intrinsically safe circuits or the electrical specifications have not been observed, the safety of the device is no longer ensured for use in hazardous areas. There is a danger of explosion.

- Connect the device with type of protection "Intrinsic safety" solely to an intrinsically safe circuit.
- Observe the specifications for the electrical data on the certificate and in Chapter "Technical data (Page 34)".

WARNING

High operating force with pneumatic drives

Risk of injury when working on control valves due to the high operating force of the pneumatic drive.

- Please observe the corresponding safety instructions for the pneumatic actuator in use.

WARNING

Lever for position detection

Danger of crushing and shearing with mounting kits which use a lever for position detection. During commissioning and ongoing operation, severing or squeezing of limbs could occur as a result of the lever. Risk of injury when working on control valves due to the high operating force of the pneumatic drive.

- Do not reach into the range of motion of the lever following mounting of the positioner and mounting kit.

WARNING

Impermissible accessories and spare parts

Danger of explosion in areas subject to explosion hazard.

- Only use original accessories or original spare parts.
- Observe all relevant installation and safety instructions described in the instructions for the device or enclosed with the accessory or spare part.

WARNING

It is possible to damage the cover gasket

If the cover gasket is not positioned correctly in the groove of the base plate, it could be damaged when the cover is mounted and screwed tight.

- Therefore make sure that the gasket is seated correctly.

WARNING

Open cable inlet or incorrect cable gland

Danger of explosion in hazardous areas.

- Close the cable inlets for the electrical connections. Only use cable glands or plugs which are approved for the relevant type of protection.

See also

Technical data (Page 34)
WARNING

Exceeded maximum ambient or process media temperature

Danger of explosion in hazardous areas.

Device damage.

- Make sure that the maximum permissible ambient and process media temperatures of the device are not exceeded. Refer to the information in Chapter "Technical data (Page 34)".

CAUTION

Unsuitable compressed air

Device damage. As a general rule, the positioner must only be operated with dry and clean compressed air.

- Use the customary water separators and filters. An additional dryer is required in extreme cases.
- Use dryers, especially if you operate the positioner at low ambient temperatures.

WARNING

Mechanical impact energy

Protect the 6DR5...0-.G...-.... version of the positioner from mechanical impact energy greater than 1 joule; this ensures adherence to the IP66 degree of protection.

NOTICE

Impact energy and torque

For versions 6DR5a.b.-Gc...-...., where a = 0, 2, 5, 6; b = 0, 1; c = G, N, M, P, Q, the following is applicable:

The device must be protected against power surges of over one joule.

For versions 6DR5a.b.-Gc...-...., where a = 0, 2, 5, 6; b = 0; c = G, N, M, P, Q, the following is applicable:

The maximum torque on the thread of the cable gland should not exceed 67 Nm.

3.1.1 Proper mounting

NOTICE

Incorrect mounting

The device can be damaged, destroyed, or its functionality impaired through improper mounting.

- Before installing ensure there is no visible damage to the device.
- Make sure that process connectors are clean, and suitable gaskets and glands are used.
- Mount the device using suitable tools. Refer to the information in Chapter "Constructional design (Page 35)", for example installation torques requirements.

CAUTION

Loss of degree of protection

Damage to device if the enclosure is open or not properly closed. The degree of protection specified on the nameplate or in Chapter "Technical data (Page 34)" is no longer guaranteed.

- Make sure that the device is securely closed.

3.2 Mounting the linear actuator

For linear actuators, use the "linear actuator" mounting kit 6DR4004-8V or the integrated attachment.

You require different installation parts depending on the selected actuator type. The mounting kit is suitable for a stroke of 3 to 35 mm. For a larger stroke range, you require a separately ordered lever 6DR4004-8L. Refer to the detailed operating instructions for further information on mounting.
3.3 Mounting the part-turn actuator

You require an actuator-specific VDI/VDE 3845 mount to install the positioner on a part-turn actuator. You receive the mount and screws from the actuator manufacturer. Ensure that the mount has a sheet metal thickness of > 4 mm and reinforcements. You also need the mounting kit 6DR4004-8D or the stainless steel coupling TGX: 16300-1556. Refer to the detailed operating instructions for further information on mounting.

3.4 Using the positioner in a humid environment

Introduction

This information contains important notes for the installation and operation of the positioner in a wet environment with frequent and heavy rains and/or continuous tropical dew. The IP66 degree of protection is no longer adequate in this environment, especially when there is a risk of water freezing.

Favorable and unfavorable mounting positions

Avoid the unfavorable mounting positions:

- To prevent fluids seeping through during normal operation of the device, e.g. through exhaust air openings.
- Otherwise the display becomes poorly legible.

![Figure 3-1 Favorable and unfavorable mounting positions](image)

Additional measures to prevent liquids from seeping through

Take additional measures to prevent liquids from seeping through if the conditions force you to operate the positioner in an unfavorable mounting position.

Additional measures required to prevent liquids from seeping through depend on the selected mounting position. You may also require:

- Gland with sealing ring, e.g. FESTO: CK - 1 / 4-PK-6
- Approximately 20 to 30 cm plastic hose, e.g. FESTO: PUN - 8 x 1.25 SW
- Cable tie; the number and the length depend on the local conditions.

Procedure

1. Install the casing such that rain water or condensate running along the pipes can be drained before the terminal strip of the positioner.
2. Check the seals of electrical connections for perfect fitting.
3. Check the seal in the enclosure cover for damage and contaminations. Clean and/or replace if required.
4. Install the positioner such that the sintered bronze attenuator at the bottom side of the enclosure points downwards in the vertical mounting position. If this is not possible, replace the attenuator with a suitable gland with a plastic hose.

Procedure for installing the plastic hose on the gland

1. Unscrew the sintered bronze attenuator from the exhaust air opening at the bottom side of the enclosure.
2. Screw in the aforementioned gland into the exhaust air opening.
3. Install the aforementioned plastic hose into the gland and check whether it fits firmly.
4. Fasten the plastic hose with a cable tie onto the control valve such that the opening points downwards.
5. Ensure that the plastic hose does not have any kinks and the exhaust air flows out without any hindrance.

3.5 Positioners subjected to fast acceleration or strong vibration

3.5.1 Introduction locking the setting

The electropneumatic positioner has an gear latch for the friction clutch and for the transmission ratio selector.

Strong acceleration forces act on control valves that are subjected to heavy mechanical loads, e.g. breakaway valves, strongly shaking or vibrating valves, as well as in case of "vapor shocks". These forces may be much higher than the specified data. This may cause the friction clutch to move in extreme cases.

The positioner is equipped with an gear latch for the friction clutch to counter these extreme cases. The setting of the transmission ratio selector can also be locked.

The locking procedure is illustrated and described below.

3.5.2 Procedure locking the setting

Overview diagram

NOTICE
Wrong registration of the rotary or part-turn movement
A different setting of the transmission ratio selector and the gear latch results in a hysteresis in position registration. The hysteresis in position registration can result in unstable control behavior of the higher level control loop.

- Make sure the transmission ratio selector ⑤ and the gear latch ① are set to the same value, either to 33° or to 90°.

![Diagram of locking friction clutch and transmission ratio]

① Gear latch
② Locking transmission ratio to 33°
③ Neutral position
④ Locking transmission ratio to 90°
⑤ Transmission ratio selector
⑥ Friction clutch
⑦ Friction clutch latch
⑧ Locking friction clutch
⑨ Release friction clutch

Figure 3-2 Locking friction clutch and transmission ratio
Requirements

- The positioner is mounted.
- You know whether the transmission ratio is to be set to 33° or 90°.
- The positioner has been commissioned successfully, i.e. initialization was completed with "FINISH".

Procedure

NOTICE

The following is applicable for the "flameproof enclosure" version:

- A friction clutch is provided on the outside of the positioner axis. Change the work area using this friction clutch.
- Do not open the flameproof enclosure of the positioner in explosion-prone atmospheres.

Fix the setting acquired by initialization as follows:

1. Make sure the gear latch ① is in neutral position ③. The neutral position is between 33° and 90°.
2. Make sure the transmission ratio selector ⑤ is in the correct position.
3. Fix the transmission ratio with the gear latch ①. Turn the gear latch ① with a standard approx. 4 mm wide screwdriver until the gear latch ① locks. Turning right locks the transmission ratio to 33°②. Turning left locks the transmission ratio to 90°④. The transmission ratio is locked.

Note

Changing the setting of the transmission ratio selector

The setting of the transmission ratio selector ⑤ can only be changed effectively if the gear latch ① is in the neutral position ③.

4. To fix the friction clutch ⑥ insert a standard approx. 4 mm wide screwdriver in the friction clutch gear latch ⑦.
5. Use the screwdriver to turn the friction clutch gear latch ⑦ counterclockwise until it engages. The friction clutch ⑥ is locked.

3.6 External position detection

WARNING

External position detection system

Versions with flameproof enclosures may not be operated with an external position detection system.

The aforementioned measures are not adequate in some applications. For example, continuous and strong vibrations, high or too low ambient temperatures and nuclear radiation.

The position detection system and the control unit are mounted separately for these applications. A universal component is available for this purpose. It is suitable for part-turn and linear actuators. You will require the following:

- An external position detection system with the order number C73451-A430-D78 comprising a positioner enclosure with an integrated friction clutch, potentiometer as well as different blanking plugs and seals.
- Or a contactless explosion-proof non contacting system (e.g.6DR4004-6N).
- A positioner
- A three-pole cable to connect components.
- An EMC filter module with the order number C73451-A430-D23 is provided in a set along with cable clamps and M20 cable glands.

The EMC filter module is always used for the control unit whenever an external position detection system is used instead of the internal position sensor. An external position detection system is, for example, a potentiometer with a 10 kΩ resistance or a non contacting system.
3.7 Installing option modules

A number of option modules are provided for the positioner. Different option modules are available depending on the version of the device. Only the available option modules are listed below.

For additional information and the corresponding safety notes to be observed when installing the option modules, refer to the detailed operating instructions for your respective device version.

Option modules in standard and intrinsically safe versions

The following option modules are available:

- Iy module
- Alarm module
- SIA module
- Limit value contact module
- EMC filter module

Option modules in "flameproof enclosure" version

The following option modules are available:

- Iy module
- Alarm module

4 Connecting

4.1 Basic safety instructions

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper power supply</td>
</tr>
<tr>
<td>Danger of explosion in hazardous areas as result of incorrect power supply, e.g. using direct current instead of alternating current.</td>
</tr>
<tr>
<td>- Connect the device in accordance with the specified power supply and signal circuits. The relevant specifications can be found in the certificates, in Chapter "Technical data (Page 34)" or on the nameplate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsafe extra-low voltage</td>
</tr>
<tr>
<td>Danger of explosion in hazardous areas due to voltage flashover.</td>
</tr>
<tr>
<td>- Connect the device to an extra-low voltage with safe isolation (SELV).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecting device in energized state</td>
</tr>
<tr>
<td>Danger of explosion in hazardous areas.</td>
</tr>
<tr>
<td>- Connect devices in hazardous areas only in a de-energized state.</td>
</tr>
<tr>
<td>Exceptions:</td>
</tr>
<tr>
<td>- Circuits of limited energy may also be connected in the energized state in hazardous areas.</td>
</tr>
<tr>
<td>- Exceptions for type of protection "Non-sparking nA" (Zone 2) are regulated in the relevant certificate</td>
</tr>
</tbody>
</table>
WARNING
Lack of equipotential bonding
Danger of explosion through compensating currents or ignition currents through lack of equipotential bonding.
• Ensure that the device is potentially equalized.
Exception: It may be permissible to omit connection of the equipotential bonding for devices with type of protection "Intrinsic safety Ex i".

WARNING
Unprotected cable ends
Danger of explosion through unprotected cable ends in hazardous areas.
• Protect unused cable ends in accordance with IEC/EN 60079-14.

WARNING
Improper laying of shielded cables
Danger of explosion through compensating currents between hazardous area and the non-hazardous area.
• Only ground shielded cables that run into the hazardous area at one end.
• If grounding is required at both ends, use an equipotential bonding conductor.

WARNING
Unsuitable cables and/or cable glands
Danger of explosion in hazardous areas.
• Only use suitable cables and cable glands complying with the requirements specified in Chapter "Technical data (Page 34)".
• Tighten the cable glands in accordance with the torques specified in Chapter "Technical data (Page 35)".
• When replacing cable glands use only cable glands of the same type.
• After installation check that the cables are seated firmly.

WARNING
Incorrect selection of type of protection
Danger of explosion in areas subject to explosion hazard.
This device is approved for several types of protection.
1. Decide in favor of one type of protection.
2. Connect the device in accordance with the selected type of protection.
3. In order to avoid incorrect use at a later point, make the types of protection that are not used permanently unrecognizable on the nameplate.

NOTICE
Condensation in the device
Damage to device through formation of condensation if the temperature difference between transportation or storage and the mounting location exceeds 20 °C (68°F).
• Before taking the device into operation let the device adapt for several hours in the new environment.

NOTICE
Ambient temperature too high
Damage to cable sheath.
• At an ambient temperature ≥ 60 °C (140 °F), use heat-resistant cables suitable for an ambient temperature at least 20 °C (68 °F) higher.
Two-wire mode

NOTICE

Connection of voltage source to current input
Device damage if a voltage source is connected to the current input Iw (terminals 6 and 7).
- Never connect the current input Iw to a voltage source, otherwise the positioner may be destroyed.
- Always use a voltage source with a maximum output current of I = 20 mA.

Note

Improvement of interference immunity
- Lay signal cables separate from cables with voltages > 60 V.
- Use cables with twisted wires.
- Avoid getting too close to large electrical process cells.
- Use shielded cables to guarantee the full specification according to HART.
- Take account of the conditions specified in the technical data for HART communication.

4.1.1 Additional safety notes for PA and FF

If the bus shield is fully effective, the interference immunity and the interference emission conform to the specifications. The following measures ensure that the bus shield is fully effective:
- The shields have been connected to the metallic connections of the positioner.
- The shields have been laid up to the terminal boxes, the distributor and the transceiver.

Note

Dissipation of glitch impulses/equipotential bonding
In order to dissipate glitch impulses, the positioner must be connected to an equipotential bonding cable (earth potential) using a low resistance. The positioner in the Makrolon enclosure is therefore equipped with an additional cable. Connect the this cable to the shield of the bus cable and the equipotential bonding cable using a cable clamp.

Devices in the stainless steel or aluminum enclosure have a corresponding terminal on the outer side of the enclosure. This terminal must also be connected to the equipotential bonding cable.

For applications in hazardous areas, ensure an adequately suitable equipotential bonding between the hazardous and non-hazardous areas.

The positioner is equipped with an additional input (terminal 81 [+] and terminal 82 [-]) to approach the safety position. After activating this function, this input must be continuously supplied with +24 V in order to retain the normal control function.

If this auxiliary voltage fails or is switched, the exhaust air valve is forced-opened and the actuator moves to the defined safety position so that the actuator cannot be moved using the buttons on the device and the master.

Communication with the master is still possible. The “Jumper” on the basic electronics is used to activate this function. It can be accessed after removing the module cover, and must be switched from the right position (delivery state) to the left position.
4.2 Electric connection

4.2.1 Device without explosion protection/Device with Ex d type of protection

4.2.1.1 Basic device (without and with HART)

Connection diagram for order numbers 6DR50..-0N...; 6DR50.5-0E...; 6DR51..-0N...; 6DR51.5-0E...

Figure 4-1 Device version 2-wire (without Ex/with Ex d)

Connection diagram for order numbers 6DR52..-0N...; 6DR52.5-0E...; 6DR53..-0N...; 6DR53.5-0E...

Figure 4-2 Device version 2-/3-/4-wire, with connection type 2-wire (without Ex/with Ex d)
Connection diagram for order numbers 6DR52.0N...; 6DR52.5-0E...; 6DR53.0N...; 6DR53.5-0E...

1. Basic electronics
2. Binary input 1
3. HART communicator for 6DR52.0N... and 6DR52.5-0E... only
 — Dotted connection lines: only for three-wire connection

Figure 4-3 Device version 2-/3-/4-wire, with connection type 3-/4-wire (without Ex/with Ex d)

4.2.1.2 Split range
For further information about “Split-range” operation, refer to the detailed operating instructions for your respective device version.

4.2.1.3 Basic device (PA)
Connection diagram for order numbers 6DR55.0N...; 6DR55.5-0E...

1. Basic electronics
2. Binary input 1
3. Binary input 1
4. Input: Safety shutdown
5. Power source

Figure 4-4 Device version 2-wire PROFIBUS PA (without Ex/with Ex d)
4.2.1.4 Basic device (FF)

Connection diagram for order numbers 6DR56..-ON...; 6DR56.5-0E...

4.2.2 Device with Ex i/Ex n/Ex t type of protection

WARNING

With intrinsically device version (Ex i)
Risk of explosion in hazardous areas.
For intrinsically safe device versions only the certified circuits may be connected as auxiliary power supply, control and signal circuits.

- Make sure that the power source of the used circuits is marked as intrinsically safe.

4.2.2.1 Basic device (with and without HART)

Connection diagram for order numbers 6DR50..-0E/D/F/G/K...; 6DR51..-0E/D/F/G/K...

SIPART PS2 (6DR5...)
A5E03436620-04, 02/2014

17
Connection diagram for order numbers 6DR52..-0E/D/F/G/K...; 6DR53..-0E/D/F/G/K...

① Non-hazardous area
② Potentially explosive atmosphere
③ Basic electronics
④ Binary input 1
⑤ HART communicator for 6DR52..-0E/D/F/G/K... only
⑥ Signal source

Figure 4-7 2-/3-/4-wire device version, with 2-wire connection type (Ex i/Ex n/Ex t)
Connection diagram for order numbers 6DR52...-0E/D/F/G/K...; 6DR53...-0E/D/F/G/K...

1. Non-hazardous area
2. Potentially explosive atmosphere
3. Basic electronics
4. Binary input 1
5. HART communicator for 6DR52...-0E/D/F/G/K... only
6. Signal source
7. Power source

Dotted connection lines: only for three-wire connection

Figure 4-8 2-/3-/4-wire device version, with 3-/4-wire connection type (Ex i/Ex n/Ex t)

4.2.2.2 Split range
For further information about "Split-range" operation, refer to the detailed operating instructions for your respective device version.
4.2.2.3 Basic device (PA)

Connection diagram for order number 6DR55...-0E/D/F/G/K...

① Non-hazardous area ④ Input: Safety shutdown
② Potentially explosive atmosphere ⑤ Binary input 1
③ Basic electronics ⑥ Power source

Figure 4-9 Device version 2-wire with PROFIBUS PA (Ex i/Ex n/Ex t)

4.2.2.4 Basic device (FF)

Connection diagram for order number 6DR56...-0E/D/F/G/K...

① Non-hazardous area ④ Input: Safety shutdown
② Potentially explosive atmosphere ⑤ Simulation enable
③ Basic electronics ⑥ Power source

Figure 4-10 Device version 2-wire with FOUNDATION Fieldbus (Ex i/Ex n/Ex t)
4.3 Pneumatic connection

WARNING

Pneumatic auxiliary power

Owing to safety reasons, the pneumatic auxiliary power supply must be fed after installation only if the positioner is switched to the "P-manual mode" when an electrical signal is available, refer to the as-delivered condition.

Note

Specifications regarding air quality

Observe the specifications regarding the air quality, see section "Technical specifications > Pneumatic data (Page 34)".

- If required, connect the pressure gauge block for supply air and actuating pressure.
- Connection via female thread G¼ or ¼" NPT:
 - Y1: actuating pressure 1 for single and double-acting actuators
 - Y2: actuating pressure 2 for double-acting actuators
 - Exhaust air outlet with a sound absorber at the bottom of the device. Remove the sound absorber if required.
 - PZ: Supply air 1.4 to 7 bar
- For double-acting actuators, connect actuating pressures Y1 or Y2 depending on the desired safety position. Safety position in case of electrical auxiliary power supply failure:
 - Y1: Single-acting, depressurized
 - Y1: Double-acting, maximum actuating pressure
 - Y2: double-acting, depressurized

Note

Leakage

Besides continuous air consumption, the positioner may try to compensate the position deviation due to leakage. This will lead to premature wear in the entire control unit.
- After installing the pneumatic connections, check the tightness of the entire control valve.

4.3.1 Pneumatic connection on the standard controller

Structure

The pneumatic connections are provided on the right side of the positioner.

![Diagram](image)

1. Actuating pressure Y1 for single and double-acting actuators
2. Positioner axis
3. Supply air PZ
4. Actuating pressure Y2 for double-acting actuators
5. Exhaust air outlet with a sound absorber

Figure 4-11 Pneumatic connection on the standard controller
4.3.2 Pneumatic connection in the flameproof enclosure

Structure
The pneumatic connections are provided on the right side of the positioner.

![Diagram of pneumatic connections](image)

1. Restrictor Y2 *)
2. Restrictor Y1
3. Actuating pressure Y2 *)
4. Supply air P_z
5. Actuating pressure Y1
6. Exhaust air outlet
7. Enclosure ventilation (2x)

*) for double-acting actuators

Figure 4-12 Pneumatic connection in the flameproof enclosure

4.4 Restrictors

- Reduce the air output to achieve actuating times of $T > 1.5$ s for small actuators. Use restrictors Y1 ① and Y2 ② for this purpose.
- When turned clockwise, they reduce the air output and finally shut it off.
- In order to set the restrictors, we recommend closing them and then opening slowly.
- In case of double-acting valves, ensure that both restrictors have approximately the same setting.

![Diagram of restrictors](image)

1. Restrictor Y1
2. Restrictor Y2, only in the version for double-acting actuators
3. Hexagon socket-head screw 2.5 mm

Figure 4-13 Restrictors
5 Commissioning

5.1 Basic safety instructions

⚠️ WARNING
Improper commissioning in hazardous areas
Device failure or danger of explosion in hazardous areas.
- Do not commission the device until it has been mounted completely and connected in accordance with the information in Chapter "Technical data (Page 34)".
- Before commissioning take the effect on other devices in the system into account.

⚠️ WARNING
Loss of explosion protection
Danger of explosion in hazardous areas if the device is open or not properly closed.
- Close the device as described in Chapter "Installing/mounting (Page 7)".

⚠️ WARNING
Opening device in energized state
Danger of explosion in areas subject to explosion hazard.
- Only open the device in a de-energized state.
- Check prior to commissioning that the cover, cover locks, and cable inlets are assembled in accordance with the directives.
Exception: Devices having the type of protection "Intrinsic safety Ex i" may also be opened in energized state in hazardous areas.

⚠️ WARNING
Water in compressed air line
Device damage and possibly loss of type of protection. The factory setting for the purging air selector is "IN". In the "IN" position, water from the compressed air line may enter the device from the pneumatics during initial commissioning.
- Before commissioning, make sure that no water is present in the compressed air line.
If you cannot be sure that there is no water in the compressed air line:
- Set the purging air selector to "OUT". In this way, you prevent water from the compressed air line from penetrating the device.
- Only set the purging air selector to "IN" again when all water has been discharged from the compressed air line.

⚠️ CAUTION
Loss of degree of protection
Damage to device if the enclosure is open or not properly closed. The degree of protection specified on the nameplate or in Chapter "Technical data (Page 34)" is no longer guaranteed.
- Make sure that the device is securely closed.
5.1.1 Safety notes for operation with natural gas

See detailed operating instructions for information and safety notes on operation with natural gas as an actuator medium.

5.2 Overview

Note

- During the initialization process, the operating pressure must be at least one bar more than that required to close or open the valve. However, the operating pressure should not be greater than the maximum permissible operating pressure for the actuator.
- The transmission ratio selector can be set only when the positioner is open. Therefore, check this setting before closing the enclosure.

General information about commissioning

After installing the positioner on a pneumatic actuator, you must supply electric and pneumatic auxiliary power to it.

The positioner is in the “P manual mode” before initialization. At the same time, “NOINI!” blinks in the lower line of the display.

Adjust the positioner as per the respective actuator with the help of the initialization process and by setting the parameters. If required, use the “PRST” parameter to cancel the adjustment of the positioner on the actuator. The positioner is again in the “P manual mode” after this process.

Types of Initialization

You can initialize the positioner as follows:

- Automatic initialization:
 - during automatic initialization, the positioner determines the following one after the other:
 - The direction of action
 - The actuator travel and angle of rotation
 - Movement times of the actuator

 The positioner also adjusts the control parameters as per the dynamic response of the actuator.

- Manual initialization:
 - the actuator travel and the angle of rotation of the actuator are set manually. The remaining parameters are automatically determined. This function is useful for actuators with soft end stops.

- Copying the initialization data when replacing a positioner:
 - the initialization data of a positioner can be read and copied into another positioner. A defective device can thus be replaced without interrupting an ongoing process through initialization.

You have to define a few parameters for the positioner before initialization. Owing to the preset values, you cannot adjust further parameters for initialization.

You can use a suitably configured and activated binary input to protect the configured settings against accidental adjustment.
5.3 Sequence of automatic initialization

See detailed operating instructions for information on sequence of automatic initialization.

5.4 Parameter

Introduction

Parameters 1 to 5 are the same for all versions of positioner. These parameters are used to adjust the positioner to the actuator. Normally the parameter setup is sufficient to be able to operate the positioner on an actuator.

If you want to get to know the positioner in detail, gradually try out the effects of the remaining parameters by systematic testing.

Note

Factory-set parameter values are printed in bold in the following table.

Overview

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
<th>Parameter values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.YFCT</td>
<td>Type of position actuator</td>
<td>turn (part-turn actuator)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAY (linear actuator)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LWAY (linear actuator without sine correction)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ncSt (part-turn actuator with NCS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-ncSt (part-turn actuator with NCS, inverse direction of action)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ncSL (linear actuator with NCS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ncSLL (linear actuator with NCS and lever)</td>
<td></td>
</tr>
<tr>
<td>2.YAGL</td>
<td>Nominal angle of rotation of the feedback message</td>
<td>33°</td>
<td>Degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>3.YWAY</td>
<td>Range of stroke (optional setting)</td>
<td>OFF</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>4.INITA</td>
<td>Initialization (automatic)</td>
<td>NOINI</td>
<td>no / ###.#</td>
</tr>
<tr>
<td>5.INITM</td>
<td>Initialization (manual)</td>
<td>NOINI</td>
<td>no / ###.#</td>
</tr>
</tbody>
</table>

1) Set the transmission ratio selector accordingly.
2) The parameter only appears for "WAY" and for "ncSLL".
3) When used the value must correspond with the set range of stroke on the actuator. Carriers must be scaled to the actuator's stroke value or if this is not scaled they then must be set to the next largest scaled value.
5.5 Purge air switching

When the enclosure is open, the purge air switch above the pneumatic terminal strip on the pneumatic block can be accessed.

- In the IN position, the enclosure is flushed from inside with a small volume of clean and dry instrument air.
- In the OUT position, the purge air is directly directed towards outside.

![Diagram of purge air switch]

The factory setting is the "IN" position.

5.6 Commissioning linear actuators

5.6.1 Preparing linear actuators for commissioning

Requirements

You have already installed the positioner using the suitable mounting kit.

Setting the transmission ratio selector

<table>
<thead>
<tr>
<th>Stroke [mm]</th>
<th>Lever</th>
<th>Position of the transmission ratio selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ... 20</td>
<td>Short</td>
<td>33 Down</td>
</tr>
<tr>
<td>15 ... 35</td>
<td>Short</td>
<td>90 Up</td>
</tr>
<tr>
<td>30 ... 130</td>
<td>Long</td>
<td>90 Up</td>
</tr>
</tbody>
</table>

1. Move the carrier pin on the lever. Select the scale position equal to the nominal stroke or a next-higher position.
2. Tighten the carrier pin using the M6 hexagon nut.

Connecting the positioner

1. Connect a suitable current or voltage source. The positioner is now in the "P manual mode". The current potentiometer voltage (P) in percent is shown in the upper line of the display, e.g.: "P12.3", and "NOINI" blinks in the lower line:

![Display showing P manual mode]

2. Connect the actuator and the positioner to the pneumatic lines.
3. Supply the pneumatic auxiliary power to the positioner.
Setting the actuator

1. Check whether the mechanical unit can be moved freely in the entire actuating range. Move the drive to the respective end position for this purpose using the \(\Delta \) or \(\nabla \) button.

 Note
 End position
 By simultaneously pressing the \(\Delta \) and \(\nabla \) buttons, you reach the end position faster.

2. Now move the actuator to the horizontal position of the lever.
3. A value between "P48.0" and "P52.0" is shown on the display.
4. If a value beyond this value range is shown on the display, you must move the friction clutch. Move the friction clutch until a value between "P48.0" and "P52.0" is achieved. The closer this value is to "P50.0", the more accurately the positioner determines the stroke travel.

 Note
 The following is applicable for the flameproof enclosure version:
 The inner friction clutch is fixed. Therefore, only move the outer friction clutch.

5.6.2 Automatic initialization of linear actuators

Requirements

The following conditions must be fulfilled before activating the automatic initialization:

1. The actuator spindle can be moved completely.
2. The actuator spindle is at a central position after moving.

Initializing the linear actuator automatically

 Note
 Interrupting initialization
 An ongoing initialization can be interrupted at any time. To do this, press \(\Box \). The settings configured until then are retained.
 All parameters are reset to factory settings only if you have explicitly activated the preset settings in the "PRST" parameter.

1. Switch to the "Configuration" mode. To do this, press the \(\Box \) button for at least 5 seconds. The display shows the following:

 ![Configuration Mode Display](image)

2. Call the "2.YAGL" parameter. To do this, briefly press the \(\Box \) button. The following is shown on the display depending on the setting:

 ![Parameter Setting Display](image)

3. Check whether the value displayed in the "2.YAGL" parameter matches the setting of the transmission ratio selector. If required, change the setting of the transmission ratio selector to 33° or 90°.
4. Set the "3.YWAY" parameter to determine the total stroke in mm. The setting of parameter 3 is optional. The display shows the determined total stroke only at the end of the initialization phase.
– Briefly press the button if you do not require any information about the total stroke in mm. You are then directed to parameter 4.

– Call the "3.YWAY" parameter. To do this, briefly press the button. The display shows the following:

![Image of 3.YWAY parameter](image)

Note

Set the "3.YWAY" parameter

Proceed as follows to set parameter 3:

1. On the scale of the lever, read the value marked by the carrier pin.
2. Set the parameter with the buttons or to the read value.

5. Call the "4.INITA" parameter. To do this, briefly press the button. The display shows the following:

![Image of 4.INITA parameter](image)

6. Start the initialization process. To do this, press the button for at least 5 seconds until the display shows the following:

![Image of initialization start](image)

The positioner runs through five initialization steps during the automatic initialization process. Displays for the initialization steps from "RUN 1" to "RUN 5" are shown in the lower line on the display. The initialization process depends on the actuator used, and takes up to 15 minutes.

7. The following display indicates that the automatic initialization is complete:

![Image of initialization complete](image)

Abort the automatic initialization process

1. Press the button. The display shows the following:

![Image of initialization abort](image)

The positioner is in the "Configuration" mode.

2. Exit the "Configuration" mode. To do this, press the button for at least 5 seconds. The software status is displayed.

 After releasing the button, the positioner is in "P manual mode". The positioner is not initialized.

5.6.3 Manual initialization of linear actuators

See detailed operating instructions for information on manual initialization of linear actuators.
5.7 Commissioning part-turn actuators

5.7.1 Preparing part-turn actuators for commissioning

Note

Setting of the adjustment angle
The usual adjustment angle for part-turn actuators is 90°.
- Set the transmission ratio selector in the positioner to 90°.

Condition
The following conditions must be fulfilled before activating the initialization:
1. You have installed the positioner for the part-turn actuators using the suitable mounting kit.
2. You have connected the actuator and the positioner to the pneumatic lines.
3. Pneumatic auxiliary power is supplied to the positioner.
4. The positioner has been connected to a suitable current or voltage source.

Setting the actuator
1. The positioner is in the "P manual mode". The current potentiometer voltage P in percent is shown on the upper line in the display. "NOINI" blinks in the lower line of the display. Examples of corresponding displays are given below:

 ![Display Example]

2. Check whether the mechanical unit can be moved freely in the entire actuating range. Move the drive to the respective end position for this purpose using the \(\uparrow \) or \(\downarrow \) button.

 Note
 End position
 By simultaneously pressing the \(\uparrow \) and \(\downarrow \) buttons, you reach the end position faster.

3. After checking, move the actuator to a central position. This accelerates the initialization process.

5.7.2 Automatic initialization of part-turn actuators

Requirements
The following conditions must be fulfilled before activating the automatic initialization:
1. The actuating range of the actuator can be passed through completely.
2. The actuator shaft is at a central position.

Initializing the part-turn actuator automatically

Note

Interrupting initialization
An ongoing initialization can be interrupted at any time. To do this, press []. The settings configured until then are retained. All parameters are reset to factory settings only if you have explicitly activated the preset settings in the "PRST" parameter.
1. Switch to the “Configuration” mode. To do this, press the button for at least 5 seconds until the display shows the following:

![Display Image]

2. Use the button to change from linear actuator to part-turn actuator until the display shows the following:

![Display Image]

3. Call the "2.YAGL" parameter. To do this, briefly press the button. This parameter has already been set to 90° automatically. The display shows the following:

![Display Image]

4. Call the "4.INITA" parameter. To do this, briefly press the button. The display shows the following:

![Display Image]

5. Start the initialization process. To do this, press the button for at least 5 seconds until the display shows the following:

![Display Image]

 The positioner runs through five initialization steps during the automatic initialization process. Displays for the initialization steps from "RUN1" to "RUN5" are shown in the lower line on the display. The initialization process depends on the actuator used, and takes up to 15 minutes.

6. The following display indicates that the automatic initialization is complete. The total angle of rotation of the actuator is shown on the upper line on the display:

![Display Image]

Abort the automatic initialization process

1. Press the button. The display shows the following:

![Display Image]

 The positioner is in the "Configuration" mode.

2. Exit the "Configuration" mode. To do this, press the button for at least 5 seconds.
The software status is displayed.
After releasing the button, the positioner is in "P manual mode". The part-turn actuator is not initialized.

5.7.3 Manual initialization of part-turn actuators
See detailed operating instructions for information on manual initialization of part-turn actuators.

6 Service and maintenance

6.1 Basic safety instructions

- **WARNING**
 - **Impermissible repair of the device**
 - Repair must be carried out by Siemens authorized personnel only.

- **WARNING**
 - **Impermissible accessories and spare parts**
 - Danger of explosion in areas subject to explosion hazard.
 - Only use original accessories or original spare parts.
 - Observe all relevant installation and safety instructions described in the instructions for the device or enclosed with the accessory or spare part.

- **WARNING**
 - **Improper connection after maintenance**
 - Danger of explosion in areas subject to explosion hazard.
 - Connect the device correctly after maintenance.
 - Close the device after maintenance work.
 - Refer to Chapter "Electric connection (Page 15)".

- **NOTICE**
 - **Penetration of moisture into the device**
 - Device damage.
 - Make sure when carrying out cleaning and maintenance work that no moisture penetrates the inside of the device.

- **CAUTION**
 - **Releasing key lock**
 - Improper modification of parameters could influence process safety.
 - Make sure that only authorized personnel may cancel the key locking of devices for safety-related applications.

- **WARNING**
 - **Electrostatic charge**
 - Danger of explosion in hazardous areas if electrostatic charges develop e.g. when cleaning plastic enclosures with a dry cloth.
 - Prevent electrostatic charging in hazardous areas.
WARNING

Dust layers above 5 mm
Danger of explosion in hazardous areas. Device may overheat due to dust build up.

- Remove any dust layers in excess of 5 mm.

Cleaning the enclosure

- Clean the outside of the enclosure and the display window using a cloth moistened with water or a mild detergent.
- Do not use aggressive cleaning agents or solvents. Plastic components or painted surfaces could be damaged.

6.2 Cleaning of the screens

The positioner is maintenance-free to a large extent. Screens are installed in the pneumatic connections of the positioners to protect them from rough dirt particles. If there are dirt particles in the pneumatic auxiliary power supply, they damage the screens and hamper the function of the positioner. Clean the screens as described in the following two chapters.

6.2.1 Positioner in macrolon enclosure

DANGER

Risk of explosion due to electrostatic charge
Electrostatic charges develop when cleaning the positioner in the macrolon enclosure with a dry cloth, for example. It is imperative you avoid electrostatic charges in the hazardous environment.

Removal and cleaning of the screens

1. Disconnect the pneumatic auxiliary power supply.
2. Remove the lines.
3. Unscrew the cover.
4. Unscrew the three self-tapping screws on the pneumatic terminal strip.
5. Remove the screens and O-rings behind the terminal strip.
6. Clean the screens, e.g. using compressed air.

Installation of the screens

CAUTION

Damage to the enclosure

- The enclosure is damaged due to screwing in the self-tapping screws improperly.
- Ensure that the available thread pitches are used.
- Turn the screws anticlockwise until they engage noticeably in the thread pitch.
- Tighten the self-tapping screws only after they have engaged.

1. Insert the screens into the recesses of the macrolon enclosure.
2. Place the O-rings on the screens.
3. Fit the pneumatic terminal strip on both studs so that it fits flushly.
4. Screw-on the three self-tapping screws.
5. Place the cover and tighten it.
6. Reconnect the pipelines and feed the pneumatic power supply.
6.2.2 Positioner in stainless steel, aluminum and flameproof aluminum enclosure

Removal, cleaning and installation of the screens
1. Disconnect the pneumatic auxiliary power supply.
2. Remove the pipelines.
3. Remove the metal screen from the bores carefully.
4. Clean the metal screens, e.g. using compressed air.
5. Insert the screens.
6. Connect the pipelines again.
7. Feed the pneumatic auxiliary power supply.

6.3 Repair/Upgrading
Send defective devices to the repairs department, together with information on the malfunction and the cause of the malfunction. When ordering replacement devices, please provide the serial number of the original device. You can find the serial number on the nameplate.

6.4 Return procedure
Enclose the bill of lading, return document and decontamination certificate in a clear plastic pouch and attach it firmly to the outside of the packaging. Any devices/replacement parts which are returned without a decontamination declaration will be cleaned at your expense before further processing. For further details refer to the operating instructions.

See also
Return document (http://www.siemens.com/processinstrumentation/returngoodsnote)
Decontamination declaration (http://www.siemens.com/sc/declarationofdecontamination)

6.5 Disposal

Devices identified by this symbol may not be disposed of in the municipal waste disposal services under observance of the Directive 2002/96/EC on waste electronic and electrical equipment (WEEE).
They can be returned to the supplier within the EC or to a locally approved disposal service. Observe the specific regulations valid in your country.
7 Technical data

7.1 All device versions

7.1.1 Operating conditions

<table>
<thead>
<tr>
<th>Rated conditions</th>
<th>7.1.2 Pneumatic data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td></td>
</tr>
<tr>
<td>In hazardous areas, observe the maximum permissible ambient temperature corresponding to the temperature class.</td>
<td></td>
</tr>
<tr>
<td>Permissible ambient temperature for operation</td>
<td>-30 ... +80 °C (-22 ... +176°F)</td>
</tr>
<tr>
<td>Degree of protection 1)</td>
<td>IP66 to EN 60529/NEMA 4X</td>
</tr>
<tr>
<td>Mounting position</td>
<td>Any; in wet environment, pneumatic connections and outlet opening not upward</td>
</tr>
</tbody>
</table>

Vibration resistance

- Harmonic oscillations (sine) according to EN 60068-2-6/10.2008
 - 3.5 mm (0.14”), 2 ... 27 Hz, 3 cycles/axle
 - 98.1 m/s² (321.84 ft/s²), 27 ... 300 Hz, 3 cycles/axle
- Bumping (half-sine) according to EN 60068-2-27/02.2010
 - 150 m/s² (492 ft/s²), 6 ms, 1000 shocks/axle
- Noise (digitally controlled) according to EN 60068-2-64/04.2009
 - 10 ... 200 Hz; 1 (m/s²)²/Hz (3.28 (ft/s²)²/Hz)
 - 200 ... 500 Hz; 0.3 (m/s²)²/Hz (0.98 (ft/s²)²/Hz)
 - 4 hours/axle

- Recommended range of continuous operation of the entire control valve
 - ≤ 30 m/s² (98.4 ft/s²) without resonance peak

Climate class

- According to DIN EN 60721-3-4

- Storage
 - 1K5, but -40 ... +80°C (1K5, but -40 ... +176°F)
- Transport
 - 2K4, but -40 ... +80°C (2K4, but -40 ... +176°F)
- Operation 2)
 - 4K3, but -30 to +80 °C (4K3, but -22 to +176 °F) 3)

1) Max. impact energy 1 Joule for enclosure with inspection window 6DR5..0 and 6DR5..1.
2) At ≤ -10 °C (≤ 14 °F), the display refresh rate is limited. In the case of use with Iy module, only T4 is permissible.
3) -20 to +80 °C (-4 to +176 °F) for 6DR55..-0G ..., 6DR56..-0G ..., 6DR55..-0D ... and 6DR56..-0D...

7.1.2 Pneumatic data

<table>
<thead>
<tr>
<th>Pneumatic data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary power (air supply)</td>
<td>Compressed air, carbon dioxide (CO2), nitrogen (N), noble gases or cleaned natural gas</td>
</tr>
<tr>
<td>Pressure</td>
<td>1.4 ... 7 bar (20.3 ... 101.5 psi)</td>
</tr>
</tbody>
</table>

Air quality to ISO 8573-1

- Solid particulate size and density
 - Class 2
- Pressure dew point
 - Class 2 (min. 20 K (36°F) below ambient temperature)
- Oil content
 - Class 2

Unrestricted flow (DIN 1945)

- Inlet air valve (ventilate actuator) 1)
 - 2 bar (29 psi) 4.1 Nm³/h (18.1 USgpm)
 - 4 bar (58 psi) 7.1 Nm³/h (31.3 USgpm)
 - 6 bar (87 psi) 9.8 Nm³/h (43.1 USgpm)
Pneumatic data
- **Air exhaust valve (depressurize drive) 1)**
 - 2 bar (29 psi) 8.2 Nm³/h (36.1 USgpm)
 - 4 bar (58 psi) 13.7 Nm³/h (60.3 USgpm)
 - 6 bar (87 psi) 19.2 Nm³/h (84.5 USgpm)

- **Valve leakage** < 6 ⋅ 10⁻⁴ Nm³/h (0.0026 USgpm)
- **Throttle ratio** Adjustable up to ∞ : 1
- **Auxiliary power consumption in the controlled state** < 3 ⋅ 10⁻² Nm³/h (0.158 USgpm)

1) When using device version Ex d (6DR5..5...), values are reduced by approximately 20%.

7.1.3 Constructional design

7.1.4 Controller

Control unit
- Five-point controller
- Dead zone
 - dEBA = auto
 - dEBA = 0.1 ... 10 %

Analog-to-digital converter
- Scanning time 10 ms
- Resolution ≤ 0.05 %
- Transmission error ≤ 0.2 %
- Temperature influence ≤ 0.1 %/10 K (≤ 0.1 %/18 °F)

Cycle time
- 20 mA/HART device 20 ms
- PA device 60 ms
- FF device 60 ms (min. loop time)

7.2 Natural gas as actuator medium

See detailed operating instructions for technical data for natural gas as actuator medium.
7.3 SIPART PS2 with and without HART

7.3.1 Electrical data

<table>
<thead>
<tr>
<th>Current input I_N</th>
<th>Basic device without explosion protection</th>
<th>Basic device with explosion protection Ex d</th>
<th>Basic device with explosion protection Ex "ia"</th>
<th>Basic device with explosion protection Ex "ic", "nA", "t"</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rated signal range</td>
<td>0/4 ... 20 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Test voltage</td>
<td>DC 840 V, 1 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Binary input BE1 (terminals 9/10; galvanically connected to basic device)</td>
<td>Suitable only for floating contact; max. contact load < 5 μA with 3 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2-wire connection (terminals 6/8)

<table>
<thead>
<tr>
<th>Current to maintain the auxiliary power supply</th>
<th>3.6 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required load voltage U_B (corresponds to Ω at 20 mA)</td>
<td></td>
</tr>
<tr>
<td>• Without HART (6DR50..)</td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>6.36 V (= 318 Ω)</td>
</tr>
<tr>
<td>Max.</td>
<td>6.48 V (= 324 Ω)</td>
</tr>
<tr>
<td>• Without HART (6DR53..)</td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>7.9 V (= 395 Ω)</td>
</tr>
<tr>
<td>Max.</td>
<td>8.4 V (= 420 Ω)</td>
</tr>
<tr>
<td>• With HART (6DR51..)</td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>6.6 V (= 330 Ω)</td>
</tr>
<tr>
<td>Max.</td>
<td>6.72 V (= 336 Ω)</td>
</tr>
<tr>
<td>• With HART (6DR52..)</td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>8.4 V (= 420 Ω)</td>
</tr>
<tr>
<td>Max.</td>
<td>8.8 V (= 440 Ω)</td>
</tr>
<tr>
<td>• Static destruction limit</td>
<td>± 40 mA</td>
</tr>
<tr>
<td>Effective inner capacitance C_i</td>
<td>22 nF</td>
</tr>
<tr>
<td>Effective inner inductance L_i</td>
<td>-</td>
</tr>
<tr>
<td>• Without HART</td>
<td></td>
</tr>
<tr>
<td>• With HART</td>
<td></td>
</tr>
<tr>
<td>For connecting to circuits with the following peak values</td>
<td>U_n = DC 30 V</td>
</tr>
<tr>
<td>• Without HART</td>
<td></td>
</tr>
<tr>
<td>• With HART</td>
<td></td>
</tr>
</tbody>
</table>

SIPART PS2 (6DR5..)

A5E03436620-04, 02/2014
3-/4-wire connection (terminals 2/4 and 6/8)

<table>
<thead>
<tr>
<th></th>
<th>Basic device without explosion protection</th>
<th>Basic device with explosion protection Ex d</th>
<th>Basic device with explosion protection Ex "ia"</th>
<th>Basic device with explosion protection Ex "ic", "nA", "t"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load voltage at 20 mA</td>
<td>≤ 0.2 V (= 10 Ω)</td>
<td>≤ 0.2 V (= 10 Ω)</td>
<td>≤ 1 V (= 50 Ω)</td>
<td>≤ 1 V (= 50 Ω)</td>
</tr>
<tr>
<td>Auxiliary power supply (U_H)</td>
<td>DC 18 ... 35 V</td>
<td>DC 18 ... 35 V</td>
<td>DC 18 ... 30 V</td>
<td>DC 18 ... 30 V</td>
</tr>
<tr>
<td>Current consumption (I_H)</td>
<td>((V_H - 7.5 V)/2.4 , k\Omega) [mA]</td>
<td>(U_n = 30, V) (I_n = 100, mA) (P_n = 1, W)</td>
<td>"ic": (U_i = 30, V) (I_i = 100, mA)</td>
<td>"nA"/"t": (U_n \leq 30, V) (I_n \leq 100, mA)</td>
</tr>
</tbody>
</table>

For connecting to circuits with the following peak values:

- \(U_{in} = 30\, V\) \(I_{in} = 100\, mA\) \(P_{in} = 1\, W\)

\"ic": \(U_i = 30\, V\) \(I_i = 100\, mA\)

\"nA"/\"t": \(U_n \leq 30\, V\) \(I_n \leq 100\, mA\)

Effective inner capacitance \(C_i\)
- - 22 nF 22 nF

Effective inner inductance \(L_i\)
- - 0.12 mH 0.12 mH

Galvanic isolation:
- Between \(U_H\) and \(I_W\)
- Between \(U_H\) and \(I_W\) (2 intrinsically safe circuits)
- Between \(U_H\) and \(I_W\)

7.3.2 Design

Connections, electrical
- Screw terminals: 2.5 AWG 28-12
- Cable gland:
 - M20x1.5 or \(\frac{1}{2}\)-14 NPT
 - Ex d certified M20x1.5, \(\frac{1}{2}\)-14 NPT or M25x1.5
 - M20x1.5 or \(\frac{1}{2}\)-14 NPT
 - M20x1.5 or \(\frac{1}{2}\)-14 NPT

Connections, pneumatic
- Female thread G \(\frac{3}{4}\) or \(\frac{3}{4}\)-18 NPT
7.4 SIPART PS2 with PROFIBUS PA/with FOUNDATION Fieldbus

7.4.1 Electrical data

<table>
<thead>
<tr>
<th>Auxiliary power supply bus circuit</th>
<th>Basic device without explosion protection</th>
<th>Basic device with explosion protection Ex d</th>
<th>Basic device with explosion protection Ex "ia"</th>
<th>Basic device with explosion protection Ex "ic", "nA", "t"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus voltage</td>
<td>9 ... 32 V</td>
<td>9 ... 32 V</td>
<td>9 ... 24 V</td>
<td>9 ... 32 V</td>
</tr>
<tr>
<td>For connecting to circuits with the following peak values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bus connector with FISCO supply unit</td>
<td>-</td>
<td>-</td>
<td>"ic":</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$U_i = 17.5 \text{ V DC}$</td>
<td>$I_i = 380 \text{ mA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$U_i = 17.5 \text{ VDC}$</td>
<td>$I_i = 570 \text{ mA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"nA", "f":</td>
<td></td>
</tr>
<tr>
<td>- Bus connector with barrier</td>
<td></td>
<td></td>
<td>$U_i = \text{ DC 24 V}$</td>
<td>$I_i = 250 \text{ mA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective inner capacitance C_i</td>
<td></td>
<td>Negligible</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Effective inner inductance L_i</td>
<td></td>
<td>8 μH</td>
<td>8 μH</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>11.5 mA ± 10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional fault current</td>
<td>0 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety shutdown can be activated using "Jumper" (terminals 81 and 82)

- Input resistance > 20 kΩ
- Signal status "0" (shutdown active) 0 ... 4.5 V or no switch
- Signal status "1" (shutdown inactive) 13 ... 30 V

For connecting to power source with the following peak values

- $U_i = \text{ DC 30 V}$
- $I_i = 100 \text{ mA}$
- $P_i = 1 \text{ W}$
- "nA":
 - $U_n \leq \text{ DC 30 V}$
 - $I_n \leq 100 \text{ mA}$
- "ic":
 - $U_i = \text{ DC 30 V}$
 - $I_i = 100 \text{ mA}$

Effective internal capacitance and inductance

- Negligible

Electrically isolated from bus circuit and binary input.
Basic device without explosion protection	Basic device with explosion protection Ex d	Basic device with explosion protection Ex "ia"	Basic device with explosion protection Ex "ic", "nA", "t"

Binary input BE1 (terminals 9 and 10) electrically connected to the bus circuit

- jumpered or connection to switch contact. Suitable only for floating contact; max. contact load < 5 μA with 3 V

Galvanic isolation

- For basic device without Ex protection and for basic device with Ex d: Galvanic isolation between the basic device and the input for safety shutdown and the outputs of option modules.

- For basic device Ex "ia": The basic device, the input for safety shutdown, and the outputs of option modules are individual intrinsically safe circuits.

- For basic device Ex "ic", "nA", "t": Galvanic isolation between the basic device and the input for safety shutdown and the outputs of option modules.

Test voltage DC 840 V, 1 s

7.4.2 Design

Connections, electrical

- Screw terminals: 2.5 AWG28-12
- Cable gland: M20x1.5 or ½-14 NPT, M20x1.5; ½-14 NPT or M25x1.5

Connections, pneumatic

- Female thread G¼ or ¼-18 NPT

7.4.3 PROFIBUS PA communication

Communication

Layers 1 + 2 as per PROFIBUS PA, transmission technique as per IEC 1158-2; slave function layer 7 (protocol layer) as per PROFIBUS DP, standard EN 50170 with the extended PROFIBUS functionality (all data is acyclic, manipulated variable, feedbacks and statuses are additionally cyclic)

C2 connections

Four connections with the master class 2 are supported; automatic connection termination 60 s after interruption in communication

Device profile

PROFIBUS PA profile B, version 3.0; over 150 objects

Response time for a master telegram

Typically, 10 ms

Device address

126 (in the as-delivered condition)

PC parameter assignment software

SIMATIC PDM; supports all device objects. The software is not included in the scope of delivery.
7.4.4 FOUNDATION Fieldbus communication

<table>
<thead>
<tr>
<th>Communication group and class</th>
<th>According to the technical specification of the Fieldbus Foundation for H1 communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function blocks</td>
<td>Group 3, Class 31PS (Publisher Subscriber)</td>
</tr>
<tr>
<td></td>
<td>1 resource block (RB2)</td>
</tr>
<tr>
<td></td>
<td>1 analog output function block (AO)</td>
</tr>
<tr>
<td></td>
<td>1 PID function block (PID)</td>
</tr>
<tr>
<td></td>
<td>1 transducer block (standard advanced positioner valve)</td>
</tr>
<tr>
<td>Execution times of the blocks</td>
<td>AO: 60 ms</td>
</tr>
<tr>
<td></td>
<td>PID: 80 ms</td>
</tr>
<tr>
<td>Physical layer profile</td>
<td>123, 511</td>
</tr>
<tr>
<td>FF registration</td>
<td>Tested with ITK 5.0</td>
</tr>
<tr>
<td>Device address</td>
<td>22 (when delivered)</td>
</tr>
</tbody>
</table>
7.5 Option modules

7.5.1 Alarm module

<table>
<thead>
<tr>
<th>Alarm module</th>
<th>Without Ex protection/with Ex protection Ex d</th>
<th>With Ex protection Ex "ia"</th>
<th>With Ex protection Ex "ic", "nA", "t"</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 binary output circuits</td>
<td>6DR4004-8A</td>
<td>6DR4004-6A</td>
<td>6DR4004-6A</td>
</tr>
<tr>
<td>• Alarm output A1: Terminals 41 and 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Alarm output A2: Terminals 51 and 52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fault message output: Terminals 31 and 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Auxiliary voltage U_H</td>
<td>≤ 35 V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>• Signal status
High (not addressed) Conductive, $R = 1, \text{k}\Omega$, +3/-1 % *)</td>
<td>≥ 2.1 mA</td>
<td>≥ 2.1 mA</td>
<td></td>
</tr>
<tr>
<td>• Low *) (addressed) Deactivated, $I_H < 60, \mu\text{A}$</td>
<td>≤ 1.2 mA</td>
<td>≤ 1.2 mA</td>
<td></td>
</tr>
<tr>
<td>*) The status is also Low if the basic device is faulty or without a auxiliary power.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For connecting to circuits with the following peak values
 $U_i = 15, \text{VDC}$
 $I_i = 25, \text{mA}$
 $P_i = 64, \text{mW}$</td>
<td>$U_i = 15, \text{VDC}$
 $I_i = 25, \text{mA}$
 "ic":
 $U_i = 25.2, \text{V}$
 $I_i = 25.2, \text{mA}$
 "nA"/"t":
 $U_i \leq 25.5, \text{V}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective internal capacitance</td>
<td>$C_i = 5.2, \text{nF}$</td>
<td>$C_i = 5.2, \text{nF}$</td>
<td></td>
</tr>
<tr>
<td>Effective internal inductance</td>
<td>$L_i = \text{negligibly small}$</td>
<td>$L_i = \text{negligibly small}$</td>
<td></td>
</tr>
</tbody>
</table>

1 binary input circuit			
• Binary input BE2: Terminals 11 and 12, terminals 21 and 22 (jumper)			
• Galvanically connected with the basic device			
Signal status 0	Floating contact, open		
Signal status 1	Floating contact, closed		
Contact load	3 V, 5 μA		
• Electrically isolated from the basic device			
Signal status 0	≤ 4.5 V or open		
Signal status 1	≥ 13 V		
Internal resistance	≥ 25 kΩ		
• Static destruction limit	± 35 V	-	-
• Connecting to circuits with the following peak values $U_i = \text{DC}\, 25.2\, \text{V}$ "ic": $U_i = \text{DC}\, 25.2\, \text{V}$ "nA"/"t": $U_i \leq 25.5\, \text{V}$			
Effective internal capacitance	$C_i = \text{negligibly small}$	$C_i = \text{negligibly small}$	
Effective internal inductance	$L_i = \text{negligibly small}$	$L_i = \text{negligibly small}$	
Galvanic isolation	The three outputs, the BE2 input and the basic device are galvanically isolated from each other.		
Test voltage	DC 840 V, 1 s		
7.5.2 Iy module

<table>
<thead>
<tr>
<th>Without Ex protection/with Ex protection Ex d</th>
<th>With Ex protection Ex ia (only in temperature class T4)</th>
<th>With Ex protection Ex “ic”, “nA”, “tt”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iy module</td>
<td>6DR 4004-8j</td>
<td>6DR 4004-6j</td>
</tr>
<tr>
<td>Direct current output for position feedback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 current output, terminals 61 and 62</td>
<td>6DR 4004-6j</td>
<td></td>
</tr>
</tbody>
</table>

- **2-wire connection**
- **Rated signal range**: 4...20 mA, short-circuit proof
- **Dynamic range**: 3.6...20.5 mA
- **Auxiliary voltage U_H**: +12 ... +35 V
- **External load R_e [kΩ]**: $\leq (U_H [V] - 12 V)/I [mA]$

<table>
<thead>
<tr>
<th>Temperature influence</th>
<th>$\leq 0.1%/10^\circ K$ ($\leq 0.1%/18^\circ F$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>$\leq 0.1%$</td>
</tr>
<tr>
<td>Residual ripple</td>
<td>$\leq 1%$</td>
</tr>
</tbody>
</table>

- **For connecting to circuits with the following peak values**
 - $U_i = DC\ 30\ V$
 - $I_i = 100\ mA$
 - $P_i = 1\ W$
 - $“ic”$: $U_i = DC\ 30\ V$
 - $I_i = 100\ mA$
 - $“nA”, “tt”$: $U_n \leq DC\ 30\ V$
 - $I_n \leq 100\ mA$
 - $P_n \leq 1\ W$

| Effective internal capacitance | - | $C_i = 11\ nF$ |
| Effective internal inductance | - | $L_i = negligibly small$ |

- **Galvanic isolation**: Safe galvanic isolation from alarm option and basic device
- **Test voltage**: DC 840 V, 1 s

7.5.3 SIA module

<table>
<thead>
<tr>
<th>Without Ex protection</th>
<th>With Ex protection Ex “ia”</th>
<th>With Ex protection Ex “ic”, “nA”, “tt”</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIA module</td>
<td>6DR 4004-8G</td>
<td>6DR 4004-6G</td>
</tr>
</tbody>
</table>

- **Limit encoder with slotted initiators and fault message output**
- **2 slotted initiators**
 - Binary output (limit transmitter) A1: Terminals 41 and 42
 - Binary output (limit transmitter) A2: Terminals 51 and 52

<table>
<thead>
<tr>
<th>2-wire connection</th>
<th>2 wire technology in accordance with EN 60947-5-6 (NAMUR), for switching amplifiers connected on load side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal state Low (triggered)</td>
<td>$< 1.2\ mA$</td>
</tr>
<tr>
<td>2 slotted initiators</td>
<td>Type SJ 2-SN</td>
</tr>
<tr>
<td>Function</td>
<td>NC contact (NC, normally closed)</td>
</tr>
</tbody>
</table>
| Connecting to circuits with the following peak values | Nominal voltage 8 V; current consumption: $\geq 3\ mA$ (limit not activated), $\leq 1\ mA$ (limit activated) | $“ic”$: $U_i = DC\ 15\ V$
 - $I_i = 25\ mA$
 - $P_i = 64\ mW$
 - $“nA”$: $U_n \leq DC\ 15\ V$
 - $I_n \leq 25\ mA$
 - $P_n \leq 64\ mW$
7.5.4 Limit value contact module

Mechanical limit switch module

<table>
<thead>
<tr>
<th>Without Ex protection</th>
<th>With Ex protection Ex "ia"</th>
<th>With Ex protection Ex "ic", "nA", "t"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective internal capacitance</td>
<td>-</td>
<td>C_i = 41 nF</td>
</tr>
<tr>
<td>Effective internal inductance</td>
<td>-</td>
<td>L_i = 100 μH</td>
</tr>
</tbody>
</table>

1 fault message output

- Binary output: Terminals 31 and 32
- Connection: At switching amplifier in accordance with EN 60947-5-6: (NAMUR), U_H = 8.2 V, R_i = 1 kΩ.

Signal state High (not triggered)

- R = 1.1 kΩ
- > 2.1 mA
- > 2.1 mA

Signal state Low (triggered)

- R = 10 kΩ
- < 1.2 mA
- < 1.2 mA

Auxiliary power supply U_H

- U_H ≤ DC 35 V
- I ≤ 20 mA

Connecting to circuits with the following peak values

- U_i = DC 15 V
- I_i = 25 mA
- P_i = 64 mW

- U_i = DC 15 V
- I_i = 25 mA

- "nA":
 - U_H ≤ DC 15 V
 - P_n ≤ 64 mW

Effective internal capacitance

- C_i = negligibly small
- C_i = negligibly small

Effective internal inductance

- L_i = negligibly small
- L_i = negligibly small

Galvanic isolation

The 3 outputs are galvanically isolated from the basic device.

Test voltage

DC 840 V, 1 s
7.5.5 EMC filter module

Without Ex protection

- Resistance of the external potentiometer: 10 kΩ

With Ex protection Ex ia

- Maximum values when powered by the PROFIBUS basic device:
 - $U_o = 5$ V
 - $I_o = 75$ mA static
 - $I_o = 160$ mA short-term
 - $P_o = 120$ mW

With Ex protection Ex "ic", "nA", "t"

- Maximum values when powered by other basic devices:
 - $U_o = 5$ V
 - $I_o = 100$ mA
 - $P_o = 33$ mW
 - $C_o = 1$ µF
 - $L_o = 1$ mH

Galvanic isolation

- Galvanically connected with the basic device

Test voltage

- DC 840 V, 1 s

7.5.6 Non-contacting position sensor

Additional modules

Without Ex protection

- Linear actuator 6DR4004-1N.20: 3 to 14 mm (0.12 ... 0.55")

With Ex protection Ex "ia"

- Linear actuator 6DR4004-1N.30: 10 ... 130 mm (0.39 ... 5.12") up to 200 mm (7.87") on request

With Ex protection Ex "ic", "nA", "t"

- Part-turn actuator: 30 ... 100°

- Linearity (after corrections made by positioner): ± 1%

- Hysteresis: ± 0.2%

- Temperature influence (range: rotation angle 120° or stroke 14 mm):
 - ≤ 0.1%/10 K (≤ 0.1%/18 °F) for -20 to 90 °C (-4 to 194 °F)
 - ≤ 0.2%/10 K (≤ 0.2%/18 °F) for -40 to -20 °C (-40 to -4 °F)

- Climate class: According to DIN EN 60721-3-4
Additional modules

<table>
<thead>
<tr>
<th>Without Ex protection</th>
<th>With Ex protection</th>
<th>With Ex protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ex "ia"</td>
<td>Ex "ic", "nA"</td>
</tr>
</tbody>
</table>

- **Storage**: 1K5, but -40 to +90 °C (1K5, but -40 to +176 °F)
- **Transport**: 2K4, but -40 to +90 °C (2K4, but -40 to +176 °F)

Vibration resistance

<table>
<thead>
<tr>
<th>Harmonic oscillations (sine wave) according to IEC 60068-2-6</th>
<th>3.5 mm (0.14”), 2 ... 27 Hz, 3 cycles/axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent shocks according to IEC 60068-2-29</td>
<td>98.1 m/s² (321.84 ft/s²), 27 ... 300 Hz, 3 cycles/axis</td>
</tr>
</tbody>
</table>

Torque for cable gland nut made of

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Metal</th>
<th>Stainless steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Nm (1.8 ft lb)</td>
<td>4.2 Nm (3.1 ft lb)</td>
<td>4.2 Nm (3.1 ft lb)</td>
</tr>
</tbody>
</table>

Housing protection type

<table>
<thead>
<tr>
<th>Storage</th>
<th>Transport</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1K5, but -40 to +90 °C (1K5, but -40 to +176 °F)</td>
<td>2K4, but -40 to +90 °C (2K4, but -40 to +176 °F)</td>
<td>2K4, but -40 to +90 °C (2K4, but -40 to +176 °F)</td>
</tr>
</tbody>
</table>

Certificates and approvals

CE conformity: The applicable directives and standards applied with their revision levels can be found in the EC declaration of conformity on the Internet.

Explosion protection

Types of protection

<table>
<thead>
<tr>
<th>Ex markings</th>
<th>ATEX/IECEEx</th>
<th>FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1: IIC T6/T4 Gb</td>
<td>IS, Class I, Division 1, ABCD IS, Class I, Zone 1, AEEx ib, IIC</td>
<td></td>
</tr>
<tr>
<td>Zone 2: IIC T6/T4 Gc</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zone 2: IIC T6/T4 Gc</td>
<td>NI, Class I, Division 2, ABCD NI, Class I, Zone 2, AEEx nA, IIC</td>
<td></td>
</tr>
</tbody>
</table>

Permissible ambient temperature

<table>
<thead>
<tr>
<th>T4: -40 ... +90 °C (-40 ... +194 °F)</th>
<th>T4: -40 ... +85 °C (-40 ... +185 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6: -40 ... +70 °C (-40 ... +158 °F)</td>
<td>T6: -40 ... +70 °C (-40 ... +158 °F)</td>
</tr>
</tbody>
</table>

7.5.7 External position sensing system

7.5.7.1 Operating conditions for all device versions

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>In hazardous areas, observe the maximum permissible ambient temperature corresponding to the temperature class.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of protection</td>
<td>IP66 according to EN 60529 / NEMA 4X</td>
</tr>
<tr>
<td>Climate class</td>
<td>According to DIN EN 60721-3-4</td>
</tr>
<tr>
<td>Storage</td>
<td>1K5, but -40 ... +90 °C (1K5, but -40 ... +194 °F)</td>
</tr>
<tr>
<td>Transport</td>
<td>2K4, but -40 ... +90 °C (2K4, but -40 ... +194 °F)</td>
</tr>
<tr>
<td>Operation</td>
<td>4K3, but -40 ... +90 °C (4K3, but -40 ... +194 °F)</td>
</tr>
</tbody>
</table>

1) Impact energy max. 1 joule.
7.5.7.2 Constructional design for all device versions

How does it work?

- **Range of stroke (linear actuator)**
 3 ... 130 mm (0.12 ... 5.12") (angle of rotation of the positioner axis 16 to 90°)

- **Angle of rotation (part-turn actuator)**
 30 ... 100°

Mounting method

- **On the linear actuator**
 Using the mounting kit 6DR4004-8V and, if required, an additional lever arm 6DR4004-8L on the actuators as per IEC 60534-6-1 (NAMUR) with a fin, columns, or a plane surface.

- **On the part-turn actuator**
 Using the mounting kit 6DR4004-8D on the actuators with fastening plane as per VDI/VDE 3845 and IEC 60534-6-2: The required mount must be provided on the actuator-side.

Material

- **Enclosure**
 Makrolon® glass-fiber reinforced polycarbonate (PC)

- **Weight, basic device**
 Approximately 0.9 kg (1.98 lb)

- **Torque for plastic cable gland nut**
 2.5 Nm

7.5.7.3 Certificates, approvals, explosion protection for all device versions

Electrical data

For connecting to circuits with the following peak values

- $U_i = 5 \text{ V}$
- $I_i = 100 \text{ mA}$
- $P_i = 160 \text{ mW}$
- $C_i = \text{negligibly small}$
- $L_i = \text{negligibly small}$

Certificates and approvals

- **CE conformity**
 The applicable directives and standards applied with their revision levels can be found in the EC declaration of conformity on the Internet.

Explosion protection

- **Ex markings**
 ATEX

- **Intrinsic safety "ia"**
 Zone 1:
 - Ex ia IIC T6/T4 Gb
 Zone 21:
 - Ex ia IIIC 110°C Db

- **Intrinsic safety "ic"**
 Zone 2:
 - Ex ic IIC T6/T4 Gc

- **Non-sparking "nA"**
 Zone 2:
 - Ex nA IIC T6/T4 Gc

- **Permissible ambient temperature**
 T4: -40 ... +90 °C (-40 ... +194 °F)
 T6: -40 ... +60 °C (-40 ... +140 °F)
A Appendix

A.1 Certificate

The certificates can be found on the enclosed CD and on the Internet under:

Certificates (http://www.siemens.com/processinstrumentation/certificates)

A.2 Technical support

Technical Support

You can contact Technical Support for all IA and DT products:

- Via the Internet using the Support Request:
 Support request (http://www.siemens.com/automation/support-request)
- E-mail (mailto:support.automation@siemens.com)
- Phone: +49 (0) 911 895 7 222
- Fax: +49 (0) 911 895 7 223

Further information about our technical support is available on the Internet at Technical support (http://www.siemens.com/automation/csi/service)

Industry Online Support

In addition to our documentation, we offer a comprehensive knowledge base on the Internet at:

Service&Support (http://www.siemens.com/automation/service&support)

There you will find:

- The latest product information, FAQs, downloads, tips and tricks.
- Our newsletter with the latest information about our products.
- A Knowledge Manager to find the right documents for you.
- Our bulletin board, where users and specialists share their knowledge worldwide.
- Your local contact partner for Industry Automation and Drives Technologies in our partner database.
- Information about field service, repairs, spare parts and lots more under “Services.”

Additional Support

Please contact your local Siemens representative and offices if you have any questions about the products described in this manual and do not find the right answers.

Find your contact partner at:

Partner (http://www.automation.siemens.com/partner)

Documentation for various products and systems is available at:

Instructions and manuals (http://www.siemens.com/processinstrumentation/documentation)

See also

SIPART PS2 product information (http://www.siemens.com/sipartps2)

Process instrumentation catalog (http://www.siemens.com/processinstrumentation/catalogs)
Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.